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Introduction 	

Although the pathogenesis of functional gastrointestinal dis-
orders (FGIDs) is multifactorial, gastrointestinal (GI) dysmotility, 
and visceral hypersensitivity play a central role.1 Recently, much 
attention has been focused on gut microbiota, as it has become 
clear that alterations in the gut microenvironment are significantly 
involved in the pathophysiology of various diseases such as GI 
disease, metabolic syndrome, autoimmune disease, and nervous/
endocrine system disorders.2 Gut microbiota have a complex influ-

ence on metabolism, nutrition and immune function in the host, 
and therefore disruption or alteration of the microbiota plays a 
pivotal role in GI inflammatory and/or FGIDs. Gut hormones 
also have central mediating roles in GI motility, appetite and body 
energy metabolism via the brain-gut axis, and thus also have pivotal 
involvement in FGIDs whose characteristic symptoms are closely 
associated with food intake. The present review provides a broad 
outline of interactions between the gut microbiota and gut hormone 
axis in relation to GI motility in the pathophysiology of FGIDs.
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Gut microbiota exert a pivotal influence on various functions including gastrointestinal (GI) motility, metabolism, nutrition, immunity, 
and the neuroendocrine system in the host. These effects are mediated by not only short-chain fatty acids produced by microbiota 
but also gut hormones and inflammatory signaling by enteroendocrine and immune cells under the influence of the microbiota. GI 
motility is orchestrated by the enteric nervous system and hormonal networks, and disturbance of GI motility plays an important role 
in the pathophysiology of functional gastrointestinal disorders (FGIDs). In this context, microbiota-associated mediators are considered 
to act on specific receptors, thus affecting the enteric nervous system and, subsequently, GI motility. Thus, the pathophysiology of 
FGIDs is based on alterations of the gut microbiota/gut hormone axis, which have crucial effects on GI motility.
(J Neurogastroenterol Motil 2018;24:367-386)
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Role of Gut Hormones in the  
Pathophysiology of Functional  
Gastrointestinal Disorders 	

The motility of the GI tract is mediated by both neural and 
hormonal networks. Gut hormones are released from enteroendo-
crine cells scattered along the GI tract (comprising fewer than 1% 
of all GI epithelial cells),3 which play prominent roles in the hor-
monal networks during the interdigestive and postprandial periods. 
At present, more than 30 gut hormones have been isolated. Inter-
estingly, the gut hormones that function in GI motility also affect 
appetite and body energy metabolism, suggesting that feeding be-
havior and GI motility are cooperatively regulated by gut hormone 
secretion (Table 1). 

Gut Hormones Affecting Interdigestive Motility

Motilin

Motilin, which is produced mainly by M cells in the duode-

num during the interdigestive period, promotes phase III activity 
of the migrating motor complex and gastric contraction. Erythro-
mycin, a motilin receptor agonist, increases gastric emptying and 
not only alleviates gastroparesis but also mediates blood glucose 
control in diabetic patients.4 However, clinical use of erythromycin 
for dysmotility is thought to be difficult, as its continuous use causes 
dysbiosis of the gut flora.

Ghrelin

In 1999, ghrelin was isolated from the stomach as the endog-
enous ligand of growth hormone secretagogue receptor 1a.5 Ghrelin 
is produced and secreted by X/A-like cells in the stomach (especially 
the fundus)5 and stimulates appetite and food intake.6 In addition, 
accumulating evidence has clarified that ghrelin stimulates both 
gastric motility and gastric acid secretion.7,8 Ghrelin stimulates GI 
motility by acting on not only neuropeptide Y, the preganglionic 
dorsal vagal complex and vagal afferent neurons, but also intrinsic 
cholinergic neurons in the GI tract,9-12 and these effects are remark-
ably abolished by bilateral vagotomy.7 

Table 1. Profile of Gut Hormones

Gut hormones Site of secretion
Endocrine 

cells
Localization of 

receptors
Roles in gastrointestinal motility

Motilin Duodenum, jejunum M-cells Vagal nerve
CNS

Promotes phase III MMC activity 
Accelerates gastric contraction

Ghrelin Stomach, duodenum, jejunum X/A-cells Vagal nerve
CNS

Suppresses motilin release 
Suppresses phase III MMC activity

CCK Duodenum, jejunum I-cells Gastrointestine
Gallbladder
Vagal nerve
Enteric neurons
CNS

Triggers gallbladder emptying 
Slows gastric emptying
Accelerates small intestinal transit

GIP Duodenum, jejunum K-cells Enteric neurons
CNS

Reduces phase III MMC activity 
Slows small intestinal transit 

GLP-1 Ileum, colon L-cells Enteric neurons
Immune cells
CNS

Slows gastric emptying
Slows small intestinal transit 
Inhibits colonic transit 

PYY Ileum, colon L-cells Enteric neurons
CNS

Slows gastric emptying
Slows small intestinal transit 
Inhibits colonic transit 

Serotonin (5-HT) Whole GI tract EC cell Enteric neurons
Muscle cells 
Immune cells
Vagal nerve
CNS

Accelerates gastric emptying 
Accelerates gastric accommodation 
Initiates peristaltic reflex and propulsive motility
Induces slow excitatory postsynaptic potentials
Triggers colonic migrating motor complexes 

CCK, cholecystokinin; GIP, glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide; GLP-1, glucagon-like peptide 1; PYY, peptide YY; 5-HT, 
5-hydroxytryptamine; GI, gastrointestinal; EC, enterochromaffin; CNS, central nervous system; MMC, migrating motor complex.
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Gut Hormones Affecting Postprandial Motility

Cholecystokinin

Cholecystokinin (CCK) was discovered in jejunal extracts as a 
gallbladder contraction factor.13 CCK is abundantly synthesized in 
small-intestinal I-cells and cerebral neurons. In addition, CCK is 
expressed in various endocrine glands (pituitary, thyroid, pancreatic 
islets, adrenal, and testis), peripheral nerves and kidney.14 Indeed, 
CCK plays roles in not only digestive function (pancreatic enzyme 
secretion and gut motility) but also neurotransmission in the cere-
bral and peripheral neuron systems.14 In the context of gut motility, 
it has been reported that exogenous CCK suppresses antral and 
duodenal motility,15 whereas CCK receptor antagonist accelerates 
gastric emptying.16 CCK is able to excite mucosal vagal afferent fi-
bers in the stomach and regulate postprandial gastric emptying and 
satiation largely via the vagal pathway.17-19 On the other hand, small-
intestinal transit time is shortened by stimulation with exogenous 
CCK, and prolonged by CCK receptor antagonist.20 In the colon, 
CCK administration does not affect human rectal motor function.21

Glucose-dependent insulinotropic polypeptide

Glucose-dependent insulinotropic polypeptide (GIP; also 
known as gastric inhibitory polypeptide) is produced mainly by K 
cells in the duodenum22 and stimulates insulin secretion as an in-
cretin hormone in a glucose-dependent manner. In addition, GIP 
is likely to inhibit gastric acid secretion and gastric emptying in ani-
mals, whereas these inhibitory effects remain unclear in humans.22 
On the other hand, triglyceride disposal and adipose uptake of fatty 
acids may be important functions of GIP in humans.23

Glucagon-like peptide 1

Glucagon-like peptide 1 (GLP-1) is secreted predominantly 
from L cells in the ileum and colon and released as an incretin hor-
mone in response to enteral nutrient exposure.24 GLP-1 as well as 
GIP stimulates insulin secretion and is rapidly degraded by dipep-
tidylpeptidase-4 (DPP4).25 In this context, not only GLP-1 agonist 
but also the DPP4 inhibitor was developed as a therapeutic medi-
cine for diabetes. Of note, GLP-1 also plays a role in postprandial 
GI motility. Studies using endogenous/exogenous GLP-1 and/or 
DPP4 inhibitors have revealed that GLP-1 slows gastric emptying 
and intestinal motility.26 Moreover, recent evidence has suggested 
that GLP-1 inhibits postprandial GI motility through the GLP-
1 receptor at myenteric neurons, involving nitrergic and cAMP-
dependent mechanisms.27,28

Peptide YY

 Peptide YY (PYY) is secreted mainly from L cells in the ileum 
and colon29 and degraded by DPP4,30 similarly to GLP-1. Further-
more, the function of PYY resembles that of GLP-1; thus, PYY is 
likely to suppress appetite, slow gastric emptying and inhibit small-
intestinal motility.31 Endogenous PYY acts via neuronal Y2 recep-
tors to inhibit colonic transit.32 

Serotonin

Serotonin, also termed 5-hydroxytryptamine (5-HT), functions 
as both a neurotransmitter in the CNS and a local hormone in the 
GI tract. More than 90% of the body’s 5-HT is synthesized in the 
gut (approximately 90% of 5-HT originates from enterochromaf-
fin (EC) cells and 10% from enteric neuron cells).33 Tryptophan 
hydroxylase-1 is the rate-limiting enzyme for biosynthesis of 5-HT, 
and serotonin reuptake transporter (SERT) terminates the actions 
of 5-HT by removing it from the interstitial space.34 5-HT has mo-
tor function through interaction with neurons within the myenteric 
and submucosal plexuses, intrinsic and extrinsic sensory neurons, 
and EC cells. Among the 7 subtypes of serotonin receptors, 5-HT3 

and 5-HT4 receptors have been most studied in the context of GI 
motility.35 5-HT released by mucosal mechanical and chemical 
stimuli is capable of inducing the mucosal peristaltic reflex, and 
hence propulsive peristalsis, and also affects the colonic migrating 
motor complexes.35 

Dysregulation of Gut Hormone in Functional 
Gastrointestinal Disorders

FGIDs are defined by symptom-based diagnostic criteria that 
combine chronic or recurrent symptoms attributable to the GI tract 
in the absence of other pathologically based disorders. A number 
of factors are involved in the pathophysiology of FGIDs, including 
visceral sensitivity, GI motility, GI mucosal immunity, gut microbi-
ota, and psychosocial stress in brain-gut interaction.1 Gut hormones 
have been proposed as key mediators of these factors in the brain-
gut axis and are indeed involved in the development and/or exacer-
bation of FGID symptoms (Tables 2 and 3), as described below. 

Functional dyspepsia

Functional dyspepsia (FD) is a heterogeneous disorder associ-
ated with abnormalities of gut motor function, including initially 
accelerated or delayed gastric emptying, impaired proximal gastric 
relaxation, increased perception of gastric distension, and disordered 
antro-duodenal motility.36 
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Motilin and ghrelin, which may accelerate gastric emptying, 
are potential pathogenetic factors targets for clinical management of 
FD. For instance, although fasting motilin levels in FD patients do 
not differ from those in healthy subjects, exogenous motilin stimula-
tion produces greater inhibition of proximal gastric accommodation 
in FD patients.36 In connection with gastric emptying, mitemcinal 
(a motilin receptor agonist) and ABT-229 (a motilin agonist) have 

been administered to patients with gastroparesis or FD, but it is still 
unclear whether they relieve symptoms such as abdominal satiety 
and pain in patients with FD.37,38 Another motilin receptor agonist 
(camicinal; GSK962040) has been developed and used in a phase 
II trial for critically ill patients with food intolerance.39 Camicinal 
has been shown to accelerate gastric emptying by 35-60% in pa-
tients with gastroparesis,40 and therefore further clinical studies of 

Table 3. Dysregulation of Gut Hormones in Irritable Bowel Syndrome

Gut 
hormone

Pub-
lished
year

Clinical evidences for gut hormone in IBS
Reference

No.

Motilin 1985 Circulating motilin is positively correlated with symptoms in functional bowel disorders. 59
1996 The IBS patients have reduced motilin secretion after both water intake and the fat meal. 60
2005 Higher motilin levels are observed in IBS in both interdigestive and postprandial periods. 61

Ghrelin 2009 The number of ghrelin-positive cells is increased in IBS-D patients. 66
The low densities of ghrelin cell is found in IBS-C patients. 66

CCK 2006 IBS patients have increased fasting and postprandial plasma levels of CCK 178
2010 Post-infectious IBS patients have increased numbers of CCK cells in the duodenum. 70
2015 The densities of duodenal CCK cells are significantly lower in patients with IBS-D. 69

GIP 2015 The GIP cell density is significantly reduced in IBS-C. 69
GLP-1 2009 GLP-1 analog (ROSE-010) relieves acute pain attacks in IBS patients. 76

2012 GLP-1 analog (ROSE-010) delays gastric emptying of solids in IBS-C patients. 75
2014 Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle. 72
2017 Decreased serum GLP-1 correlates with abdominal pain in patients with IBS-C 71

PYY 2010 The increased PYY is observed in IBS-C patients whose colonic transit is delayed. 80
2014 The expression of PYY is increased in the ileum in patients with IBS-C. 79

The densities of PYY cells is significantly lower in IBS patients than controls.  81
PYY expression is higher in the colon in post-infectious IBS. 82

2017 PYY cell density is increased in IBS-C relative to controls. 94
Serotonin 
  (5-HT)

2003 Plasma serotonin levels is increased in IBS-D. 91
2006 Postprandial plasma serotonin level is decreased in IBS-C. 90
2007 IBS patients have elevated concentrations of platelet depleted plasma 5-HT under fasting and fed conditions 

compared with controls.
87

2009 Fasting and postprandial plasma 5-HT concentrations are significantly higher in IBS patients. 86
2010 In the IBS samples, higher 5-HT content and lower SERT mRNA are detected as compared with controls. 179

Post-infectious IBS patients have significantly lower plasma 5-HIAA. 70
2011 Compared with healthy controls, patients with IBS show a significant increase in 5-HT-positive cell counts and 

5-HT release.
92

2012 The frequency of SLC6A4-polymorphism and higher levels of 5-HT are significantly associated with IBS 180
Serotonin and PYY cell densities are reduced in the colon of IBS patients. 181

2014 The intensity of serotonin transporter immunoreactivity is increased in the ileum of patients with IBS. 182
The density of the serotonin-immunoreactive cells is significantly decreased in the IBS-M patients and in-

creased in the IBS-C patients relative to the controls.
93

2016 The 5-HIAA concentrations and 5-HT acetic acid /5-HT ratio are significantly lower in IBS compared to HC. 88
2017 The densities of serotonin cells are reduced in IBS patients. 94

IBS patients show increased 5-HT compared to healthy volunteers. 85

IBS, irritable bowel syndrome; IBS-D, irritable bowel syndrome with diarrhea; IBS-C, irritable bowel syndrome with constipation; CCK, cholecystokinin; GIP, glu-
cose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide; GLP-1, glucagon-like peptide 1; PYY, peptide YY; 5-HT, 5-hydroxytryptamine; SERT, 
serotonin reuptake transporter; 5-HIAA, 5-hydroxyindole acetic acid.
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camicinal may be justified in patients with FD.
As for ghrelin, a few studies have reported that the level of 

ghrelin in plasma is decreased in FD patients,41,42 whereas others 
have indicated that it is elevated in such patients and related to the 
severity of their symptoms,43,44 and thus opinion is still divided. The 
plasma ghrelin concentration may decrease in accordance with the 
progression of gastric atrophy due to Helicobacter pylori infection.45 
In addition to gastric atrophy, obesity and stress also affect the 
plasma ghrelin level, thus complicating our understanding of how 
ghrelin is involved in the pathophysiology of FD. Ghrelin may be 
a potentially promising therapeutic agent for FD, and Akamizu et 
al46 have reported that ghrelin administration improves appetite in 
affected patients. However, as their study was preliminary and did 
not include a placebo group, further large scale clinical studies in-
cluding FD symptoms and GI motility assessments will be needed. 

In patients with FD, both fasting and postprandial plasma 
CCK concentrations are higher. Interestingly, intake of a high-fat 
diet increases the CCK level significantly and is related to the sever-
ity of nausea, suggesting that fat diet-associated CCK is involved 
in the development of FD symptoms.47 Furthermore, Chua et al48 
have reported that FD patients stimulated with CCK-8 showed 
more severe symptoms of dyspepsia than healthy controls, sug-
gesting that FD patients are hypersensitive to CCK stimulation. 
Also, as CCK promotes serotonin secretion in the hypothalamus,49 
FD patients likely have central nervous system hypersensitivity to 
serotonin.50 Thus, postprandial CCK may affect serotonin signaling 
in the central nervous system in FD patients and participate in the 
development of their symptoms.

The hormone incretin plays a role in not only postprandial glu-
cose metabolism but also GI motility, strongly suggesting significant 
involvement of incretin in the food-intake-associated pathophysiol-
ogy of FD. Although the fasting plasma GIP and GLP-1 concen-
trations do not differ between FD patients and healthy controls, 
FD patients show hypersensitive responses to lipid infusion into the 
duodenum.51 Moreover, FD patients with severe symptoms show 
higher GIP and GLP-1 levels in response to lipid stimulation, sup-
porting the contention that incretin mediates increased intestinal 
sensitivity to nutrients in FD. Witte et al52 have also reported that 
although the GLP-1 concentration is altered in FD, postprandial 
GLP-1 secretion correlates with nausea in affected patients. GIP 
and GLP-1 may be important targets for the treatment of not only 
diabetes/metabolic syndrome but also FD, and therefore further 
clinical studies should be encouraged. 

PYY as well as GLP-1 is known to act as an “ileal brake” by 
suppressing GI motility, implying its pathophysiologic involvement 

in FD. In this connection, it is tempting to speculate that plasma 
PYY might be increased in FD patients. However, Pilichiewicz et 
al47 have reported that both the fasting and postprandial PYY levels 
are lower in FD patients than in healthy subjects, and Bharucha 
et al51 have found no difference between the two. Thus, although 
plasma PYY is not increased in patients with FD, this issue requires 
further investigation.

Data on 5-HT abnormalities are relatively fewer for FD than 
for IBS patients. It has been reported that 5-HT4 receptor agonists 
may improve symptoms of dyspepsia, particularly in patients with 
delayed gastric emptying.53 Previous studies have shown that 5-HT 
receptor 3A polymorphism54 and SERT gene polymorphism are 
associated with dyspeptic symptoms.55 Cheung et al56 recently 
showed that low levels of baseline and postprandial 5-HT are as-
sociated with early satiation, lower calorie intake, and more severe 
postprandial dyspeptic symptoms in FD patients. 

Irritable bowel syndrome

Irritable bowel syndrome (IBS) is characterized by symptoms 
such as abdominal pain or discomfort, bloating, and stool irregu-
larities, without any structural or organic lesions.57 Many factors are 
involved in the pathogenesis of IBS, and indeed gut hormones are 
key players, as described below. 

The levels of motilin reported in IBS patients have been con-
flicting, various studies indicating that they are higher,58 similar 
to,59 or reduced60 in comparison with healthy controls. Although 
dysmotility and visceral hypersensitivity are thought to play a cru-
cial role in the pathophysiology of IBS, a high level of motilin may 
not reflect alteration of GI motility in IBS patients.61 In addition, 
exogenous motilin does not affect rectal sensation, at least in healthy 
volunteers.62 These findings suggest that alterations of the motilin 
level may be a consequence rather than a cause of IBS. The effect of 
erythromycin (a motilin receptor agonist) on colonic motility is also 
controversial; some studies have demonstrated that erythromycin 
accelerates the intestinal and/or colonic transit time,63,64 whereas oth-
ers have not confirmed this.64,65 

It is interesting that the ghrelin cell density in the gastric oxyntic 
mucosa is altered in patients with IBS. On the other hand, since 
IBS and FD frequently overlap, it is not unlikely that endocrine 
cells may be altered in the upper GI in IBS. Although evidence 
is still insufficient, it has been reported that ghrelin cell density is 
decreased in patients with IBS with constipation (IBS-C).66 This 
finding may not be surprising because the delay in intestinal transit 
time can be explained by inhibition of motility-promoting ghrelin. 
In contrast, ghrelin-positive cells are increased in patients with IBS 
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with diarrhea (IBS-D),66 supporting the fact that such patients 
show rapid gastric emptying.67 However, gastric emptying in IBS is 
still controversial.68 

El-Salhy M et al69 have shown that the densities of CCK are 
reduced in the duodenum of IBS-D patients, whereas they are not 
altered in IBS-C patients. In IBS-D patients, reduction of CCK 
may be involved in the rapid gastric emptying.67 A subgroup of IBS 
patients are known to have a history of infectious colitis, and show 
an increased number of CCK-positive cells.70 Furthermore, the plas-
ma level of CCK is likely increased in the fasting and postprandial 
periods in IBS patients,70 similarly to the situation in FD patients.47 
In contrast to the stomach, CCK stimulates intestinal motility, and 
therefore high CCK levels may be associated with the diarrhea seen 
in post-infectious IBS.

The density of duodenal endocrine cells differs between healthy 
controls and IBS patients. Indeed, GIP cell density is significantly 
decreased in both IBS-C and IBS-D,69 but other information on 
GIP in IBS is sparse. Clinical trials of a GLP-1 analog have been 
performed in IBS patients. Li et al71 have shown that the serum 
GLP-1 level was significantly decreased in IBS-C patients and neg-
atively correlated with the severity of abdominal pain/discomfort. 
However, this seems paradoxical because GLP-1 inhibits intestinal 
motility and reduction of GLP-1 would lead to acceleration of GI 
motility. In this connection, opinion regarding the action of GLP-
1 on colonic motility is still divided, both inhibitory and stimulatory 
effects having been reported.72-74 In a placebo-controlled trial, Ca-
milleri et al75 showed that a GLP-1 receptor agonist, ROSE-010, 
improved colonic transit time in IBS-C patients, and Hellström 
et al76 found that ROSE-010 administration relieved acute pain in 
patients with IBS. Additionally, the GLP-1 receptor agonist also 
decreases visceral sensitivity and accelerates colonic transit via the 
central corticotropin-releasing factor and peripheral vagal pathways, 
although these findings were obtained in animal experiments.77,78 

The expression of PYY is increased in the ileum of patients 
with IBS-C.79 As PYY inhibits colonic transit, it seems logical that 
IBS-C patients with delayed colonic transit show increased expres-
sion of PYY.80 However, the number of PYY-positive endocrine 
cells is smaller in the colon and rectum in both IBS-D and IBS-
C patients,79,81 and PYY expression is high in the colon of patients 
with post-infectious IBS.82 These discrepancies may reflect the 
complicated pathophysiology of IBS. In fact, it is known that IBS 
patients switch from one subtype to another at least once yearly,83,84 
probably as a result of the complex behavior of their enteroendo-
crine cells. 

Data on 5-HT in IBS patients have been conflicting (Table 2). 

Some studies have reported that in both fasting and postprandial 
states, the plasma 5-HT level is increased in IBS patients relative to 
healthy volunteers,85-87 whereas others have found no differences in 
the plasma 5-HT level between the 2 groups.88 When IBS patients 
are subdivided, the plasma serotonin level is decreased in those with 
IBS-C89,90 and increased in those with IBS-D.90,91 A few histological 
studies have demonstrated that the number of 5-HT-positive cells is 
increased in IBS (especially post-infectious IBS),89,92 although con-
flicting data have also been reported.93,94 Genetic analyses of SERT 
polymorphism have also yielded mixed results.95-97 However, such 
discrepancies are not surprising because 5-HT is not the only factor 
operating in the development of IBS. On the other hand, the recep-
tors for 5-HT are widely expressed in various types of cells includ-
ing neurons and smooth muscle cells,35 and indeed 5-HT signaling 
is involved in GI motility and the development of IBS-related 
symptoms. In this context, it is noteworthy that release of 5-HT 
from the colonic mucosa correlated with the severity of abdominal 
pain in IBS patients.92 

Role of Gut Microbiota in the  
Pathophysiology of Functional  
Gastrointestinal Disorders 	

The human microbiota comprises approximately 1200 dif-
ferent bacterial species whose number (1013-1014) in the gut is 10 
times greater than the total number of cells in the human body.2 
Gut microbiota exert a marked influence on host physiology includ-
ing metabolism, nutrition, and immune function, and therefore, its 
disruption or alteration has been linked with GI inflammatory and 
functional disease.98 It has become increasingly evident that host-
gut microbial interactions have an extremely important role in the 
pathogenesis of FGIDs (Table 4), especially IBS.99 Recent advanc-
es in sequencing technology have revealed that the profile of gut 
microbiota differs between patients with IBS and healthy subjects, 
and this has promoted researchers to investigate the role of the gut 
microbiota in IBS. 

Gut Microbiota Production of Serotonin and SCFA
Evolutionarily-oriented studies have shown that many enzymes 

involved in human hormone metabolism have evolved through 
gene transfer from bacteria.100 Interestingly, serotonin and other 
hormones such as epinephrine, norepinephrine and dopamine are 
produced and/or secreted from specific bacterial strains.101 Further-
more, it has been revealed that microorganisms harbor hormone 
receptors,102 suggesting that gut hormones act as possible mediators 



374

Hirokazu Fukui, et al

Journal of Neurogastroenterology and Motility 374

of communication between the host and gut microbiota. 
Depending on the substrates (amino acids, lipids or carbohy-

drates) present in the intestinal lumen, gut microbiota can generate 
specific metabolites. Short-chain fatty acids (SCFAs) are produced 
by microbiota in the ileum and colon from carbohydrates with low 
digestibility (resistant starch and soluble oligo- and polysaccha-
rides). The main components of SCFAs in the human colon are 
acetate (2-carbon), propionate (3-carbon), and butyrate (4-carbon), 
at a ratio of about 3:1:1.103,104 Butyrate is considered a major energy 
source for the colonic epithelium. Propionate, entering the portal 
circle, is primarily utilized for gluconeogenesis in the liver. Conse-
quently, SCFAs in plasma are largely acetate.105,106 Approximately 
95% of the produced SCFAs are rapidly absorbed by colonocytes 
in the large intestine while the remaining 5% are secreted in the 
stools.107 

Short-chain Fatty Acids as a Mediator between Gut 
Microbiota and Endocrine Cells

SCFAs serve as not only an important energy source but also 
chemical messengers or signaling molecules for various types of 
cells. GPR41 and GPR43, which are classified as G protein-cou-
pled receptors and known as free fatty acid receptor (FFAR)3 and 
FFAR2, respectively, have recently been identified as receptors for 
SCFAs. Since these receptors are expressed in a variety of cell types, 
including colonic endocrine L cells, mucosal mast cells, adipose tis-
sue, neutrophils, and monocytes, activation of these receptors may 
elicit distinct functions in various fields. Both GPR41 and GPR43 
exhibit coupling to the Gi/o family and inhibit cAMP production, 
whereas GPR43, but not GPR41, also couples efficiently through 
the Gq protein family.108 

In the ileum and colon, GPR41 and GPR43 are expressed in 
enteroendocrine L-cells that secrete GLP-1 and PYY.109 Therefore, 
it had been expected that SCFA would promote GLP-1 and PYY 
secretion by activating these GPRs, and indeed several in vivo 
studies have demonstrated that intraluminal injection of SCFAs in-
duced the release of PYY and GLP-1 into the circulating blood.110 
Furthermore, in vitro studies have shown that activation of GPR43 
by SCFAs promotes GLP-1 secretion111 and PYY expression112 
in enteroendocrine cells. On the other hand, individual GPR41- 
or GPR43-deficient mice show low GLP-1 release in response 
to SCFA stimulation, indicating that both GPR41 and GPR43 
are involved in SCFA-evoked GLP-1 release.111 These findings 
strongly suggest that SCFA signaling to GPR41 and GPR43 on 
L cells is crucial for controlling the levels of GLP-1 and PYY, thus 
playing a pivotal role in the “ileal brake.” However, in GF mice, 

Wichmann et al113 have demonstrated that total SCFA in the cecal 
content is decreased whereas the plasma GLP-1 level is increased. 
They showed that colonization of GF mice with microbiota or treat-
ment with SCFAs reduced the expression of GLP-1 in the colon.113 
Although these findings are difficult to reconcile, the explanation 
proposed is that GF mice are deprived of SCFAs produced by gut 
microbiota and serve as an important energy source for colonocytes. 
Subsequently, in response to this insufficiency of available energy 
in the colon, the GLP-1 level is increased to slow intestinal transit. 
In this context, GPRs may act as sensors of the amount of SCFA 
rather than being receivers of SCFA signaling. 

SCFAs may be involved in the production of not only GLP-1 
and PYY, but also other gut hormones such as 5-HT, GIP, ghrelin, 
and CKK. Histological studies have clarified that GPR43 is co-
expressed with 5-HT,114 and that SCFAs stimulate the release of 
5-HT by EC cells in the colonic mucosa.115 On the other hand, 
GPR40 and/or GPR120 are co-localized in cells expressing GIP, 
GLP-1, PYY, CCK, ghrelin, or 5HT,116-118 although their ligands 
are predominantly medium- to long-chain fatty acids.119 Taken to-
gether, the available data suggest that GPRs are key tools involved 
in the interaction between endocrine cells and fatty acids produced 
from food and gut microbiota.

Alterations of Gut Microbiota in the 
Pathophysiology of Functional Gastrointestinal 
Disorders

The Rome Foundation has recently provided an excellent over-
view of the importance of microbiota in health and disease, espe-
cially functional bowel diseases.99 It is widely accepted that GI infec-
tions caused by bacteria, viruses, or parasites are strong risk factors 
for the development of FGIDs.120 With regard to the association 
between bacterial infection and FD, almost all current knowledge is 
based on H. pylori infection. H. pylori causes chronic atrophic gas-
tritis, gastroduodenal ulcers and gastric cancers, suggesting a close 
involvement in the development of organic disease. In this context, 
whether or not patients with H. pylori infection should be excluded 
from the category of FD has been discussed. However, possible 
pathogenetic concepts to explain the link between H. pylori infec-
tion and dyspeptic symptoms have been positively incorporated into 
the recent Rome IV classification121 and management guidelines 
for H. pylori infection.122 In response to the recent focus on gut 
microbiota and FGIDs, several studies have begun to investigate 
the gastric microbiota in FD patients. For instance, as dysbiosis has 
been observed in the gastric fluid of patients with FD,123 it has been 
suggested that normalization of the gastric microbiota by probiotics 
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might be an effective treatment.124 However, studies of the gastric 
microbiota in FGIDs are still at an early stage. 

The link between GI infection and FGIDs has been studied 
mainly in IBS. In 1994, a group in the United Kingdom reported 
that IBS frequently occurs in patients after Salmonella-induced 
enteritis.125 Thereafter, similar observations were reported world-
wide, and a recent meta-analysis has clearly shown that IBS occurs 
frequently after bacterial enteritis caused by pathogenic strains of 
Escherichia coli, Salmonella, and Campylobacter jejuni.126 More-
over, it is interesting that FD also occurs frequently in patients after 
bacterial enteritis, being compatible with the fact that IBS and FD 
often overlap in a single patient.126 After remission of bacterial enter-
itis, no endoscopic and/or microscopic abnormalities are detectable 
in the GI tract of such FGID patients. Why, then, do patients with 
post-infectious IBS show visceral hypersensitivity and GI dysmotil-
ity? Accumulating evidence has led to a hypothesis that pathogens 
disrupt the mucosal barrier and that subsequently mucosal immune 
cells are persistently activated as a result of increased exposure to 
luminal antigens.127 This low-grade mucosal inflammation is able to 
affect the immune system, endocrine cell behavior, and subsequent-
ly visceral sensitivity and GI motility. This modification of the gut 
environment may be central to the development of post-infectious 
IBS.

As only about 10% of IBS patients have a history of infectious 
colitis,128 what is the role of gut microbiota in IBS patients without 
such a history? Recent advances in sequencing technology have 
made it easier to obtain information on gut microbiota at the genus 
level. Comprehensive analyses of fecal samples have demonstrated 
that the gut microbiota profile in IBS patients is largely different 
from that in healthy subjects, and has reduced diversity.99,129 Spe-
cifically, several studies have demonstrated increased Firmicutes 
to Bacteroidetes ratios at the phylum level in IBS patients.99,129,130 
At the genus level, Lactobacillus, Bifidobacterium and uncultured 
Clostridium are decreased in patients with IBS, whereas Rumi-
nococcus species are enriched.130 Although it seems impossible to 
determine which bacterial strain is responsible for the development 
of IBS, dysbiosis of the microbiota is definitely a contributing factor. 
This is supported by experimental evidence that germ-free (GF) 
animals given microbiota transplants from IBS patients show vis-
ceral hypersensitivity and GI dysmotility.131,132 On the other hand, 
although stress events in early life are closely associated with IBS 
development, the gut microbiota profile may be possibly modified 
by such events.133,134 Moreover, antibiotic-induced dysbiosis (espe-
cially in childhood) has also been shown to be involved in the de-
velopment of IBS.133,135 These findings suggest that events in early 

life may be crucial in determining the IBS-related profile of gut 
microbiota. This invites speculation that manipulation of the gut 
microbiota may be useful for the treatment of IBS. Interestingly, the 
antibiotic rifaximin has been demonstrated to relieve the symptoms 
of IBS,136 although the mechanism responsible remains unclear. 
A meta-analysis has also indicated that probiotics may reduce IBS 
symptoms, although there was significant heterogeneity among the 
studies investigated,129,137,138 and the mechanism through which 
such probiotics act remains to be elucidated.

Possible Axis of Gut Microbiota and  
Enteroendocrine System Interaction in  
Functional Gastrointestinal Disorders  
Dysmotility 	

FGIDs are diagnosed on the basis of characteristic symptoms 
that are closely associated with food intake. The pathogenesis of 
FGIDs is multifactorial, and includes the neuroendocrine system, 
gut microbiota, neuroimmune reactions, interactions, psychological 
factors, and dietary factors.129 The complexity of FGID patho-
physiology may be due to the fact that through their interaction, 
these factors may become a cause and/or a consequence of the 
pathophysiology. The physiological alterations in FGIDs are also 
complicated, but there is little doubt that GI dysmotility and visceral 
hypersensitivity are critical. Here, we would like to focus on the in-
terrelationships existing among gut microbiota, gut hormones and 
GI dysmotility in FGIDs (Figure). 

Enteric Nervous System Receptors
The enteric nervous system (ENS) in the GI tract comprises 

a network of 200-600 million neurons and is involved in multiple 
aspects of host physiology including motility, metabolism, and be-
havior. This neural network is arranged in distinct units between 
the longitudinal and circular muscle layers of the intestine or in the 
submucosa as ganglionated plexi.139 Gut microbiota may interact 
with the ENS directly or via afferent nerves (vagal sensory neurons, 
spinal sensory neurons and intrinsic primary afferent neurons) and 
the CNS indirectly through neurotransmitters. The link between 
microbiota and the ENS has been demonstrated in GF mice, which 
show a reduced number of enteric neurons and associated deficits of 
gut motility,140 whereas reconstitution of GF mice with conventional 
microbiota normalizes the density of the ENS network and, subse-
quently, gut physiology.141 

How, then, does the gut microbiota affect the ENS? Impor-
tantly, the ENS expresses pattern recognition receptors known as 
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Toll-like receptors (TLRs) by which the microbiota communicate 
with the host.142 Anitha et al140 have demonstrated that TLR4-
deficient mice show a significant decrease of both the ENS network 
and GI transit time, and similar findings have been observed in 
TLR2-deficient mice.143 Another important ENS receptor type are 
the GPRs such as GPR41 and GPR43, which respond to SCFA 
signaling. Since the gut microbiota produce SCFAs, they can use 
them as chemical messengers or signaling molecules to communi-
cate with the host ENS. At present, although little is known about 
a molecular alteration of the ENS by SCFA stimulation, treatment 
with butyrate enhances histone H3 acetylation in enteric neurons 
and increases the contraction of cholinergic-mediated colonic circu-
lar muscle.144 

Gut Microbiota, Immune System Activation, and 
Gastrointestinal Motility

Not only the direct but also the indirect action of gut micro-
biota on the ENS is important, and this interaction is complicated. 
Microbiota-derived SCFAs play roles in the maintenance of intesti-
nal barrier function,145,146 and indeed, butyrate, a microbiota-derived 
SCFA, prevents bacterial translocation by increasing the expression 
of tight junction proteins such as claudin, occludin, and the zonula 
occludens.147 In this context, it is interesting to note that in IBS pa-
tients butyrate-producing bacteria may be reduced148 and intestinal 
permeability is increased.149,150 Thus, leakage of pathogens into the 

lamina propria of the intestinal mucosa is a significant trigger for ac-
tivation of the mucosal immune system. In IBS patients, increased 
amounts of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, 
and IL-8) and decreased amounts of the anti-inflammatory IL-10 
have been reported.151 Th1 cytokines such as TNFα, IL-1β, and 
IL-6 may act on the ENS and smooth muscle, resulting in suppres-
sion of GI motility.152,153 On the other hand, Th2 cytokines includ-
ing IL-10 may inhibit the expression of the above cytokines, thus 
accelerating of GI motility.152,154 In IBS, it is still unclear whether 
these cytokines simply show this pattern of interaction. However, 
imbalance of not only gut microbiota but also the cytokine profile 
must be associated with intestinal low-grade inflammation, which is 
a significant pathophysiologic alteration in IBS. 

Among the various immune cells, mast cells have been 
highlighted in the pathophysiology of IBS as their numbers are 
increased in colonic tissues of affected patients, and this increase 
is correlated with the severity of the clinical symptoms.155,156 Mast 
cells are able to release histamine, serotonin, tryptase, and prosta-
glandins, and these mediators may act on their specific receptors on 
myenteric neural cells, leading to altered motor function.155 Recent 
evidence has emphasized the pivotal roles of macrophages in GI 
motility through their action on myenteric neural cells,152,153,157,158 
and indeed increased infiltration of macrophages into colonic tissues 
is observed in IBS patients,156,159 implying that macrophages, like 
mast cells, may affect the ENS and smooth muscle through various 

SCFA Medium-/long-chain FA

GPR40 GPR120TLRsGPR43GPR43GPR41

GLP-1 PYY 5-HT

Endocrine cell

Activation

Mast cell

GIP CCK,

GLP-1 PYY 5-HT

Macrophage

GLR-1R
PYY-R

GPRs
GIP-R

CCK-R

GPRs

TLRs

5-HT-R

ENS

GPRs

Gut hormone receptors

Microbiota

Cytokines

SCFAGut hormones

Figure. Interaction among gut micro-
biota, enteroendocrine cells, immune 
cells, and enteric nervous system (ENS). 
SCFA, short-chain fatty acid; FA, fatty 
acid; GPR, G protein-coupled recep-
tor; TLR, toll-like receptor; GLP-1, 
glucagon-like peptide 1; PYY, peptide 
YY; 5-HT, 5-hydroxytryptamine; CCK, 
cholecystokinin; GIP, glucose-depen-
dent insulinotropic polypeptide/gastric 
inhibitory polypeptide; -R, receptor.
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mediators.152,153,157,158 Recently, macrophages have been classified 
into the M1 and M2 types that produce mainly Th1 and Th2 cyto-
kines, respectively.160,161 Thus, M1 macrophages release proinflam-
matory cytokines such as TNFα, IL-1β, and IL-6, whereas M2 
macrophages may suppress M1 macrophages by releasing anti-
inflammatory cytokines. Interestingly, M2 macrophages are known 
to infiltrate into the muscle layer of the intestine and may accelerate 
GI motility through stimulation with Th2 cytokines.155 Further-
more, it has been reported that serotonin plays a role in polarization 
of macrophages toward an M2 phenotype.160,162 Supporting these 
findings, we have clarified that 5-HT expression is increased in 
the colon of GF mice after fecal transplantation, and that moreover 
M2 macrophages in the colonic muscular layer are increased in 
those mice.163 Furthermore, it is noteworthy that the numbers of 
muscularis M2 macrophages and 5-HT-positive endocrine cells 
are significantly correlated throughout the GI tract, and that their 
increase is associated with acceleration of GI motility. Thus, the gut 
microbiota plays a role in the association between accelerated GI 
motility and induction of the 5 HT/muscularis mannose receptor 
positive macrophage axis in the GI tract.163 Specifically, Muller et 
al164 have demonstrated that M2 macrophages migrating adjacent 
to the ENS may be involved in the control of GI motility through 
cross-talk with enteric neurons via bone morphogenetic protein 2 
signaling. 

Gut Microbiota and Gastrointestinal  
Motility-associated Hormones

The gut microbiota is able to affect GI motility via gut hor-
mones. As shown in Tables 2 and 3, many investigators have inten-
sively studied the gut microbiota and 5-HT in patients with IBS. 
However, to clarify the role of gut microbiota in the gut hormone/
GI motility axis in IBS, experimental animal studies are needed. In 
particular, much evidence has been obtained from experiments us-
ing GF animals. For example, Wikoff et al165 first demonstrated that 
GF mice display lower levels of 5-HT than conventionally raised 
animals, suggesting that the presence of gut microbiota is essential 
for the production and release of 5-HT.165 In addition, Kashyap 
et al166 have clarified that colonization of GF mice with gut micro-
biota from humans or mice can significantly shorten the GI transit 
time and that this effect is partially inhibited by 5-HT receptor 
antagonist.166 These findings strongly indicate that 5-HT induced 
by microbiota stimuli play a role in the acceleration of GI motility. 
Moreover, Yano et al167 have clarified that indigenous spore-forming 
bacteria from the gut microbiota promote tryptophan hydroxylase 
1 expression and 5-HT biosynthesis in EC cells, thus modulating 

GI motility. Although the mechanism by which microbiota induce 
5-HT expression is still unclear, SCFA and cytokines in minimal 
inflammation may be candidate stimuli for 5-HT-producing EC 
cells,168 and the microbiota themselves may also produce 5-HT.101 
On the other hand, various types of 5-HT receptors are present 
on not only central and peripheral neural cells but also immune 
cells, smooth muscle, and enterocytes.168,169 Additionally, the SERT, 
which terminates the action of 5-HT, is expressed in epithelial cells, 
neural cells, and platelets.169 Accordingly, it is extremely difficult to 
determine how the gut microbiota/5-HT axis operates in GI motil-
ity and the development of symptoms in FGIDs. 

Recently, not only 5-HT but also other gut hormones have 
been highlighted in relation to the gut microbiota/gut hormone 
axis in GI motility. As a result of their elegant work, Wichmann et 
al113 have proposed that the microbiota/GLP-1 axis is important for 
regulation of energy availability and GI motility. Specifically, entero-
endocrine L cells sense the amount of bacteria-producing SCFA in 
the colon and secrete GLP-1 to allow greater nutrient absorption by 
inhibiting intestinal motility. Accordingly, it is tempting to speculate 
that GPR41 and GPR43 may play some roles in this process be-
cause these receptors are responsive to SCFA ligands. In support of 
this hypothesis, in vitro studies have shown that the SCFA affects 
GLP-1 secretion via GPR43 and/or GPR41 in L cells.111,170 En-
teroendocrine cells are significant intermediates in facilitating com-
munication between microbes and the ENS.171 By using GF with 
fecal transplantation animal models, we have recently demonstrated 
that gut microbiota accelerate GI motility while suppressing the ex-
pression of the GLP-1 receptor in myenteric neural cells through-
out the GI tract.172 These findings suggest that the gut microbiota 
affects the expression of gut hormone receptors on the ENS in the 
GI muscle layer.

Except for 5-HT and GLP-1, there are few data on the role 
of the gut microbiota/gut hormone axis in GI motility. As PYY is 
produced in L cells, it may––like GLP-1––be a sensor for SCFA 
and inhibit GI motility. Interestingly, GPRs are widely expressed in 
enteroendocrine cells such as those producing ghrelin, CCK, GIP, 
PYY, or GLP-1.170 Moreover, since enteric neurons harbor the 
receptors for all of these gut hormones, a mechanism similar to that 
for GLP-1 or 5-HT may exist in the microbiota/gut hormone axis 
to mediate GI motility.

Summary and Conclusions 	

Gut microbiota have a pivotal influence on various functions 
including GI motility, metabolism, nutrition, immunity, and the 
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neuroendocrine system in the host. This variety of bacterial actions 
is due to the production of SCFA and various mediators such as 
gut hormones and/or cytokines, which gut microbiota induce in en-
teroendocrine and immune cells. Moreover, the receptors for SCFA 
and gut hormones are widely distributed in neural cells, endocrine 
cells, immune cells and smooth muscle, further making it difficult 
to understand the role of gut microbiota in the pathophysiology of 
FGIDs. GI motility is well orchestrated by the ENS and hormonal 
networks, and its disturbance is closely associated with not only GI 
dysmotility but also visceral hypersensitivity and energy imbalance, 
that are significant abnormalities in the pathophysiology of FGIDs. 
In this article, we have mentioned that the gut microbiota may af-
fect the ENS directly via the SCFA, or indirectly via gut hormones. 
Furthermore, we have described that gut microbiota elicit minimal 
inflammation by activation of the immune system and that mast 
cells and macrophages modify GI motility by acting on the ENS 
and smooth muscle. In this context, alteration of the gut microbiota/
gut hormone axis significantly affects GI motility in the pathophysi-
ology of FGIDs.

Although we have focused on GI motility in FGIDs, both the 
gut microbiota and gut hormones also play pivotal roles in metabo-
lism, the brain-gut axis, and systemic immunity. Interestingly, the 
gut microbiota and gut hormones have been highlighted as targets 
of new therapeutic approaches for FGIDs, and indeed some trials 
using probiotics, antibiotics or gut hormone agonist/antagonists 
have been undertaken. Also, fecal microbiota transplantation, as 
applied to Clostridium difficile infection, may be attempted for 
FGIDs in the future. The research field focusing on interactions 
between gut microbiota and gut hormones may be referred to as 
“microbial endocrinology,” and is expected to become a focus of 
intense interest in the near future.
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